Jump to content
Create New...

Search the Community

Showing results for tags 'Guidelines'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Brand Discussion
    • Acura
    • Alfa Romeo
    • Aston Martin
    • Audi
    • Bentley
    • BMW
    • Bugatti
    • Buick
    • BYD
    • Cadillac
    • Chevrolet
    • Chrysler
    • Citroen and DS
    • Dodge
    • Ferrari
    • Fiat
    • Fisker
    • Ford
    • General Motors
    • Genesis
    • GMC Trucks
    • Heritage Marques
    • Honda
    • Hyundai
    • Infiniti
    • Jaguar
    • Jeep
    • Karma
    • Kia
    • Lamborghini
    • Land Rover
    • Lexus
    • Lincoln
    • Lotus
    • Lucid
    • Maserati
    • Mazda
    • McLaren
    • Mercedes-Benz
    • MINI
    • Mitsubishi
    • Nissan
    • Opel/Vauxhall
    • Other Makes
    • Peugeot
    • Polestar
    • Porsche
    • Ram
    • Renault
    • Rivian
    • Rolls-Royce
    • SAAB / NEVS
    • Scout
    • SEAT
    • Skoda
    • SMART
    • Stellantis
    • Subaru
    • Suzuki
    • Tata
    • Tesla
    • Toyota
    • VinFast
    • Volkswagen
    • Volvo
  • Auto Shows
    • North American International Auto Show in Detroit (NAIAS)
    • CES
    • Japan Mobility Show / Tokyo Auto Salon
    • Beijing Motor Show
    • Chicago Auto Show (CAS)
    • New York International Auto Show (NYIAS)
    • Geneva International Motor Show
    • Auto Shanghai
    • Paris Motor Show
    • International Motor Show - Germany
    • LA Auto Show
    • S.E.M.A
    • Other Auto Shows
  • News and Views
    • Reviews
    • Opinion
    • Industry News
    • Motorcycles
    • Reader Reviews
    • Sales Figure Ticker
  • Social Central
    • The Lounge
    • Member's Rides Showcase
    • Advertising Archive
    • New Member Check-In
    • Auctions and Classifieds
    • Site News and Feedback
    • Merchandise Lookout
    • Newsletters
  • Forum Information
  • Tech Corner
    • Tech Section
    • Electronics & Technology
    • Product Questions and Reviews
    • Alternative Fuels & Propulsion
    • Powertrain
  • Design Studio
  • Cadillac Appreciation Club's Cadillac Discussion
  • European Car Lovers's Topics
  • EV Fans's Discussion

Categories

  • News
    • Acura
    • Alfa Romeo
    • Alternative Fuels
    • Aston Martin
    • Audi
    • Automotive Industry
    • Bentley
    • BMW
    • BYD
    • Bugatti
    • Buick
    • Cadillac
    • Chevrolet
    • Chrysler
    • Citroen and DS
    • Dodge
    • Ferrari
    • Fiat
    • Fisker
    • Ford
    • Genesis
    • General Motors
    • GMC
    • Holden
    • Honda
    • Hyundai
    • Infiniti
    • Jaguar
    • Jeep
    • Karma
    • Kia
    • Lamborghini
    • Land Rover
    • Lexus
    • Lincoln
    • Lotus
    • Lucid Motors
    • Maserati
    • Mazda
    • McLaren
    • Mercedes Benz
    • MINI
    • Mitsubishi
    • Motorcycle News
    • Nissan
    • Opel/Vauxhall
    • Peugeot
    • Polestar
    • Porsche
    • Ram Trucks
    • Renault
    • Rivian
    • Rolls-Royce
    • Saab / NEVS
    • Sales Figures
    • Scion
    • Scout
    • SEAT
    • Skoda
    • SMART
    • Stellantis
    • Subaru
    • Tesla
    • Toyota
    • Volkswagen
    • Volvo
    • VinFast
    • Zotye
  • Auto Shows
    • North American International Autoshow (NAIAS-Detroit)
    • C.E.S.
    • Chicago Auto Show (CAS)
    • New York International Auto Show (NYIAS)
    • Geneva International Motor Show
    • Beijing Motor Show
    • Auto Shanghai
    • Paris Motor Show
    • International Auto Show - Germany
    • Los Angeles Auto Show
    • SEMA
    • Japan Mobility Show / Tokyo Auto Salon
  • Reviews
  • Opinion
  • How Do I?

Calendars

There are no results to display.

There are no results to display.


Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL


Skype


Location


Interests

Found 2 results

  1. William Maley Staff Writer - CheersandGears.com May 31, 2013 With automakers and researchers testing autonomous cars more and more, the National Highway Traffic Safety Administration put its regulatory hat on and announced guidelines that outline the recommended rules for the vehicles and drivers. NHTSA in its guidelines says it recognizes five different levels of vehicle automation. Those five levels are, Level 0 - No Automation: Driver is in complete control of the vehicle Level 1- Function-specific Automation: Vehicle has some features that can temporally take control of the vehicle, such as electronic stability control or pre-charged brakes Level 2 - Combined Function Automation: Two Features work together to temporary relieve the driver of control. Example is adaptive cruise control with lane centering. Level 3 - Limited Self-Driving Automation: Vehicle can drive it self, but must give back control to the driver under certain conditions Level 4 - Full Self-Driving Automation: Vehicle performs all driving functions without any human interaction NHTSA also issued recommended guidelines for states that want to allow autonomous vehicles to test on public roads. Those guidelines include a special driver’s license endorsements for anyone operating an autonomous or semi-autonomous vehicles and limitations on where and in what types of conditions autonomous vehicles can operate. In addition to their guidelines, NHTSA announced a four-year initial research program that will look at how autonomous and partially autonomous technologies can have an impact on safety. "Whether we're talking about automated features in cars today or fully automated vehicles of the future, our top priority is to ensure these vehicles – and their occupants – are safe. Our research covers all levels of automation, including advances like automatic braking that may save lives in the near term, while the recommendations to states help them better oversee self-driving vehicle development, which holds promising long-term safety benefits," said Secretary of Transportation Ray LaHood. Source: NHTSA William Maley is a staff writer for Cheers & Gears. He can be reached at [email protected] you can follow him on twitter at @realmudmonster. Press Release is on Page 2 U.S. Department of Transportation Releases Policy on Automated Vehicle Development NHTSA 14-13 Thursday, May 30, 2013 Provides guidance to states permitting testing of emerging vehicle technology WASHINGTON – The U.S. Department of Transportation's National Highway Traffic Safety Administration (NHTSA) today announced a new policy concerning vehicle automation, including its plans for research on related safety issues and recommendations for states related to the testing, licensing, and regulation of "autonomous" or "self-driving" vehicles. Self-driving vehicles are those in which operation of the vehicle occurs without direct driver input to control the steering, acceleration, and braking and are designed so that the driver is not expected to constantly monitor the roadway while operating in self-driving mode. "Whether we're talking about automated features in cars today or fully automated vehicles of the future, our top priority is to ensure these vehicles – and their occupants – are safe," said Secretary Ray LaHood. "Our research covers all levels of automation, including advances like automatic braking that may save lives in the near term, while the recommendations to states help them better oversee self-driving vehicle development, which holds promising long-term safety benefits." NHTSA's policy addresses: An explanation of the many areas of vehicle innovation and types of automation that offer significant potential for enormous reductions in highway crashes and deaths; A summary of the research NHTSA has planned or has begun to help ensure that all safety issues related to vehicle automation are explored and addressed; and Recommendations to states that have authorized operation of self-driving vehicles, for test purposes, on how best to ensure safe operation as these new concepts are being tested on highways. Several states, including Nevada, California and Florida have enacted legislation that expressly permits operation of self-driving (sometimes called "autonomous") vehicles under certain conditions. These experimental vehicles are at the highest end of a wide range of automation that begins with some safety features already in vehicles, such as electronic stability control. Today's policy will provide states interested in passing similar laws with assistance to ensure that their legislation does not inadvertently impact current vehicle technology and that the testing of self-driving vehicles is conducted safely. "We're encouraged by the new automated vehicle technologies being developed and implemented today, but want to ensure that motor vehicle safety is considered in the development of these advances," said NHTSA Administrator David Strickland. "As additional states consider similar legislation, our recommendations provide lawmakers with the tools they need to encourage the safe development and implementation of automated vehicle technology." The policy statement also describes NHTSA's research efforts related to autonomous vehicles. While the technology remains in early stages, NHTSA is conducting research on self-driving vehicles so that the agency has the tools to establish standards for these vehicles, should the vehicles become commercially available. The first phase of this research is expected to be completed within the next four years. NHTSA's many years of research on vehicle automation have already led to regulatory and other policy developments. The agency's work on electronic stability control (ESC), for example, led to a standard mandating that form of automated technology on all new light vehicles since MY 2011. More recently, NHTSA issued a proposal that would require ESC on new heavy vehicles. NHTSA defines vehicle automation as having five levels: No-Automation (Level 0): The driver is in complete and sole control of the primary vehicle controls – brake, steering, throttle, and motive power – at all times. Function-specific Automation (Level 1): Automation at this level involves one or more specific control functions. Examples include electronic stability control or pre-charged brakes, where the vehicle automatically assists with braking to enable the driver to regain control of the vehicle or stop faster than possible by acting alone. Combined Function Automation (Level 2): This level involves automation of at least two primary control functions designed to work in unison to relieve the driver of control of those functions. An example of combined functions enabling a Level 2 system is adaptive cruise control in combination with lane centering. Limited Self-Driving Automation (Level 3): Vehicles at this level of automation enable the driver to cede full control of all safety-critical functions under certain traffic or environmental conditions and in those conditions to rely heavily on the vehicle to monitor for changes in those conditions requiring transition back to driver control. The driver is expected to be available for occasional control, but with sufficiently comfortable transition time. The Google car is an example of limited self-driving automation. Full Self-Driving Automation (Level 4): The vehicle is designed to perform all safety-critical driving functions and monitor roadway conditions for an entire trip. Such a design anticipates that the driver will provide destination or navigation input, but is not expected to be available for control at any time during the trip. This includes both occupied and unoccupied vehicles.
  2. William Maley Staff Writer - CheersandGears.com May 31, 2013 With automakers and researchers testing autonomous cars more and more, the National Highway Traffic Safety Administration put its regulatory hat on and announced guidelines that outline the recommended rules for the vehicles and drivers. NHTSA in its guidelines says it recognizes five different levels of vehicle automation. Those five levels are, Level 0 - No Automation: Driver is in complete control of the vehicle Level 1- Function-specific Automation: Vehicle has some features that can temporally take control of the vehicle, such as electronic stability control or pre-charged brakes Level 2 - Combined Function Automation: Two Features work together to temporary relieve the driver of control. Example is adaptive cruise control with lane centering. Level 3 - Limited Self-Driving Automation: Vehicle can drive it self, but must give back control to the driver under certain conditions Level 4 - Full Self-Driving Automation: Vehicle performs all driving functions without any human interaction NHTSA also issued recommended guidelines for states that want to allow autonomous vehicles to test on public roads. Those guidelines include a special driver’s license endorsements for anyone operating an autonomous or semi-autonomous vehicles and limitations on where and in what types of conditions autonomous vehicles can operate. In addition to their guidelines, NHTSA announced a four-year initial research program that will look at how autonomous and partially autonomous technologies can have an impact on safety. "Whether we're talking about automated features in cars today or fully automated vehicles of the future, our top priority is to ensure these vehicles – and their occupants – are safe. Our research covers all levels of automation, including advances like automatic braking that may save lives in the near term, while the recommendations to states help them better oversee self-driving vehicle development, which holds promising long-term safety benefits," said Secretary of Transportation Ray LaHood. Source: NHTSA William Maley is a staff writer for Cheers & Gears. He can be reached at [email protected] you can follow him on twitter at @realmudmonster. Press Release is on Page 2 U.S. Department of Transportation Releases Policy on Automated Vehicle Development NHTSA 14-13 Thursday, May 30, 2013 Provides guidance to states permitting testing of emerging vehicle technology WASHINGTON – The U.S. Department of Transportation's National Highway Traffic Safety Administration (NHTSA) today announced a new policy concerning vehicle automation, including its plans for research on related safety issues and recommendations for states related to the testing, licensing, and regulation of "autonomous" or "self-driving" vehicles. Self-driving vehicles are those in which operation of the vehicle occurs without direct driver input to control the steering, acceleration, and braking and are designed so that the driver is not expected to constantly monitor the roadway while operating in self-driving mode. "Whether we're talking about automated features in cars today or fully automated vehicles of the future, our top priority is to ensure these vehicles – and their occupants – are safe," said Secretary Ray LaHood. "Our research covers all levels of automation, including advances like automatic braking that may save lives in the near term, while the recommendations to states help them better oversee self-driving vehicle development, which holds promising long-term safety benefits." NHTSA's policy addresses: An explanation of the many areas of vehicle innovation and types of automation that offer significant potential for enormous reductions in highway crashes and deaths; A summary of the research NHTSA has planned or has begun to help ensure that all safety issues related to vehicle automation are explored and addressed; and Recommendations to states that have authorized operation of self-driving vehicles, for test purposes, on how best to ensure safe operation as these new concepts are being tested on highways. Several states, including Nevada, California and Florida have enacted legislation that expressly permits operation of self-driving (sometimes called "autonomous") vehicles under certain conditions. These experimental vehicles are at the highest end of a wide range of automation that begins with some safety features already in vehicles, such as electronic stability control. Today's policy will provide states interested in passing similar laws with assistance to ensure that their legislation does not inadvertently impact current vehicle technology and that the testing of self-driving vehicles is conducted safely. "We're encouraged by the new automated vehicle technologies being developed and implemented today, but want to ensure that motor vehicle safety is considered in the development of these advances," said NHTSA Administrator David Strickland. "As additional states consider similar legislation, our recommendations provide lawmakers with the tools they need to encourage the safe development and implementation of automated vehicle technology." The policy statement also describes NHTSA's research efforts related to autonomous vehicles. While the technology remains in early stages, NHTSA is conducting research on self-driving vehicles so that the agency has the tools to establish standards for these vehicles, should the vehicles become commercially available. The first phase of this research is expected to be completed within the next four years. NHTSA's many years of research on vehicle automation have already led to regulatory and other policy developments. The agency's work on electronic stability control (ESC), for example, led to a standard mandating that form of automated technology on all new light vehicles since MY 2011. More recently, NHTSA issued a proposal that would require ESC on new heavy vehicles. NHTSA defines vehicle automation as having five levels: No-Automation (Level 0): The driver is in complete and sole control of the primary vehicle controls – brake, steering, throttle, and motive power – at all times. Function-specific Automation (Level 1): Automation at this level involves one or more specific control functions. Examples include electronic stability control or pre-charged brakes, where the vehicle automatically assists with braking to enable the driver to regain control of the vehicle or stop faster than possible by acting alone. Combined Function Automation (Level 2): This level involves automation of at least two primary control functions designed to work in unison to relieve the driver of control of those functions. An example of combined functions enabling a Level 2 system is adaptive cruise control in combination with lane centering. Limited Self-Driving Automation (Level 3): Vehicles at this level of automation enable the driver to cede full control of all safety-critical functions under certain traffic or environmental conditions and in those conditions to rely heavily on the vehicle to monitor for changes in those conditions requiring transition back to driver control. The driver is expected to be available for occasional control, but with sufficiently comfortable transition time. The Google car is an example of limited self-driving automation. Full Self-Driving Automation (Level 4): The vehicle is designed to perform all safety-critical driving functions and monitor roadway conditions for an entire trip. Such a design anticipates that the driver will provide destination or navigation input, but is not expected to be available for control at any time during the trip. This includes both occupied and unoccupied vehicles. View full article
×
×
  • Create New...

Hey there, we noticed you're using an ad-blocker. We're a small site that is supported by ads or subscriptions. We rely on these to pay for server costs and vehicle reviews.  Please consider whitelisting us in your ad-blocker, or if you really like what you see, you can pick up one of our subscriptions for just $1.75 a month or $15 a year. It may not seem like a lot, but it goes a long way to help support real, honest content, that isn't generated by an AI bot.

See you out there.

Drew
Editor-in-Chief

Write what you are looking for and press enter or click the search icon to begin your search